

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix: Infused Product

Type: Topical

Sample:LA40423009-005 Harvest/Lot ID: 032404 Laboratory License # CBD

Sample Size Received: 1 units Retail Product Size: 453 mg Retail Serving Size: 1 mg

> Servings: 1 Ordered: 04/15/24 Sampled: 04/23/24

Completed: 05/01/24

Certificate of Analysis

May 01, 2024 | Inesscents Aromatic **Botanicals**

PASSED

Pages 1 of 7

SAFETY RESULTS

Heavy Metals PASSED

Microbials **PASSED**

Residuals Solvents **PASSED**

Filth **PASSED**

NOT TESTED

Moisture **NOT TESTED**

Homogeneity Testing NOT TESTED

Terpenes **TESTED**

PASSED

Cannabinoid

Total THC

Total THC/Container : 0.0000 mg

Total CBD

Total CBD/Container : 181.2000 mg

Reviewed On: 04/26/24 14:28:37

Batch Date: 04/24/24 10:12:52

Total Cannabinoids

Total Cannabinoids/Container: 181.2000

ng/unit 181.200 <loq <loq="" <loq<="" th=""><th>anhuned buu</th><th></th><th></th><th></th><th>Majalah</th><th></th><th>Eutenetien</th><th>d-4</th><th></th><th></th><th>F. A</th><th>un ato al love</th><th></th></loq>	anhuned buu				Majalah		Eutenetien	d-4			F. A	un ato al love	
NABINOIDS CBDV CBDA CBGA CBG CBD THCV CBN D9-THC D8-THC CBC THCA 6 0.0400 <loq< td=""> <t< th=""><th></th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th><th>%</th></t<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>		%	%	%	%	%	%	%	%	%	%	%	%
NABINOIDS CBDV CBDA CBGA CBG CBD THCV CBN D9-THC D8-THC CBC THCA 0.0400 <loq <loq="" <loq<="" td=""><td>LOQ</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td><td>0.0010</td></loq>	LOQ	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
NABINOIDS CBDV CBDA CBGA CBG CBD THCV CBN D9-THC D8-THC CBC THCA	mg/unit	181.200	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>181.200</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>181.200</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>181.200</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>181.200</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	181.200	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
NABINOIDS CBDV CBDA CBGA CBG CBD THCV CBN D9-THC D8-THC CBC THCA	%	0.0400	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0.0400</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.0400</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.0400</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.0400</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0.0400	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
		NABINOIDS											
											iiig		

Analyzed by: 877, 1525, 879, 1526 04/26/24 09:56:24

Analysis Method: SOP.T.30.031.NV; SOP.T.40.031.NV Analytical Batch: LA005247POT

Instrument Used: LV-SHIM-003 Analyzed Date : N/A

Reagent: 120723.25; 040224.01; 090523.07; 030924.09; 042524.R03; 041824.R06

Consumables: 20220103; 042c6; 257747; 258638 Pipette: LV-PIP-015; LV-PIP-008; LV-PIP-023

Cannabinoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP.T.30.031.NV for sample preparation and SOP.T.40.031.NV for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA + 0.877 * CBDA

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

PASSED

Inesscents Aromatic Botanicals

Sample : LA40423009-005 Harvest/Lot ID: 032404 Sampled: 04/23/24 Ordered: 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method: SOP Client Method

Page 2 of 7

Terpenes

TESTED

Terpenes	LOQ (%)	mg/unit	t %	Result (%)	Terpenes	LOQ (%)	mg/unit	t %	Result (%)		
TOTAL TERPENES	0.0200	480.180	0.1060		ALPHA-TERPINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
EUCALYPTOL	0.0200	339.750	0.0750		ALPHA-TERPINEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
D-LIMONENE	0.0200	140.430	0.0310		BETA-CARYOPHYLLENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
BORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>BETA-MYRCENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>BETA-MYRCENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<>		BETA-MYRCENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
CAMPHENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>BETA-PINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th></th><th>BETA-PINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<>		BETA-PINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
CAMPHOR	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>DELTA-3-CARENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th></th><th>DELTA-3-CARENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<>		DELTA-3-CARENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
CARYOPHYLLENE OXIDE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>GAMMA-TERPINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th></th><th>GAMMA-TERPINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<></th></loq<>		GAMMA-TERPINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th></loq<>			
CEDROL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Analyzed by:</th><th>Weight:</th><th>Ext</th><th>raction date</th><th>9:</th><th>Extracted by:</th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>Analyzed by:</th><th>Weight:</th><th>Ext</th><th>raction date</th><th>9:</th><th>Extracted by:</th><th></th></loq<>		Analyzed by:	Weight:	Ext	raction date	9:	Extracted by:	
FARNESENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>880, 879, 1526</th><th>1.0751g</th><th>N/A</th><th>A</th><th></th><th>880</th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>880, 879, 1526</th><th>1.0751g</th><th>N/A</th><th>A</th><th></th><th>880</th><th></th></loq<>		880, 879, 1526	1.0751g	N/A	A		880	
FENCHONE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Analysis Method : SOP.T.30.061.NV; SOP.</th><th>T.40.061.NV</th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>Analysis Method : SOP.T.30.061.NV; SOP.</th><th>T.40.061.NV</th><th></th><th></th><th></th><th></th><th></th></loq<>		Analysis Method : SOP.T.30.061.NV; SOP.	T.40.061.NV					
FENCHYL ALCOHOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analytical Batch : LA005254TER Instrument Used : LV-GCMS-002</th><th></th><th></th><th></th><th>4/29/24 16:09:19 24/24 14:45:50</th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Analytical Batch : LA005254TER Instrument Used : LV-GCMS-002</th><th></th><th></th><th></th><th>4/29/24 16:09:19 24/24 14:45:50</th><th></th><th></th></loq<>		Analytical Batch : LA005254TER Instrument Used : LV-GCMS-002				4/29/24 16:09:19 24/24 14:45:50		
GERANIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed Date: 04/25/24 18:55:50</th><th></th><th>batti</th><th>ii bate: 04/2</th><th>17/27 17:73:30</th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed Date: 04/25/24 18:55:50</th><th></th><th>batti</th><th>ii bate: 04/2</th><th>17/27 17:73:30</th><th></th><th></th></loq<>		Analyzed Date: 04/25/24 18:55:50		batti	ii bate: 04/2	17/27 17:73:30		
GERANYL ACETATE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Dilution: 10</th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Dilution: 10</th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>		Dilution: 10						
GUAIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Reagent: 120523.05; 031424.01; 031424</th><th></th><th>4.21</th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Reagent: 120523.05; 031424.01; 031424</th><th></th><th>4.21</th><th></th><th></th><th></th><th></th></loq<>		Reagent: 120523.05; 031424.01; 031424		4.21				
HEXAHYDROTHYMOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Consumables: 0123; 2911002215; 20220 Pipette: LV-PIP-027; LV-PIP-028; LV-PIP-0</th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>Consumables: 0123; 2911002215; 20220 Pipette: LV-PIP-027; LV-PIP-028; LV-PIP-0</th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>		Consumables: 0123; 2911002215; 20220 Pipette: LV-PIP-027; LV-PIP-028; LV-PIP-0						
ISOBORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th>0 001 HU</th><th>0.000 400</th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th>0 001 HU</th><th>0.000 400</th><th></th></loq<>						0 001 HU	0.000 400	
ISOPULEGOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Terpene screening is performed using gas chro</th><th>matography with mass spe</th><th>ectrometry folio</th><th>owing SOP.T.3</th><th>80.061.NV and SOP.T.40</th><th>J.061.NV.</th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Terpene screening is performed using gas chro</th><th>matography with mass spe</th><th>ectrometry folio</th><th>owing SOP.T.3</th><th>80.061.NV and SOP.T.40</th><th>J.061.NV.</th><th></th></loq<>		Terpene screening is performed using gas chro	matography with mass spe	ectrometry folio	owing SOP.T.3	80.061.NV and SOP.T.40	J.061.NV.	
LINALOOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
NEROL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
NEROLIDOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
OCIMENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
PULEGONE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
SABINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
SABINENE HYDRATE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
TERPINOLENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
VALENCENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-BISABOLOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-CEDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-HUMULENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-PHELLANDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
ALPHA-PINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>								
Total (%)			0.1060								

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

PASSED

Sample : LA40423009-005 Harvest/Lot ID: 032404 Sampled: 04/23/24 Ordered: 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method: SOP Client Method

Page 3 of 7

Pesticides

P	A	S	S	Е	D

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result	Pestic
ABAMECTIN	0.05	ppm	0.0001	PASS	<loq< td=""><td>CYPER</td></loq<>	CYPER
ACEQUINOCYL	0.05	ppm	4	PASS	<loq< td=""><td>CYFLU</td></loq<>	CYFLU
BIFENAZATE	0.05	ppm	0.4	PASS	<loq< td=""><td>PENTA</td></loq<>	PENTA
BIFENTHRIN	0.05	ppm	0.0001	PASS	<loq< td=""><td></td></loq<>	
DAMINOZIDE	0.05	ppm	0.0001	PASS	<loq< td=""><td>Analyz 1662,</td></loq<>	Analyz 1662,
DIMETHOMORPH	0.05	ppm	2	PASS	<loq< td=""><td>Analys</td></loq<>	Analys
ETOXAZOLE	0.05	ppm	0.4	PASS	<loq< td=""><td>Analys</td></loq<>	Analys
FENHEXAMID	0.05	ppm	1	PASS	<loq< td=""><td>Instru</td></loq<>	Instru
FENOXYCARB	0.05	ppm	0.0001	PASS	<loq< td=""><td>Analyz</td></loq<>	Analyz
FLONICAMID	0.05	ppm	1	PASS	<loq< td=""><td>Dilutio</td></loq<>	Dilutio
FLUDIOXONIL	0.05	ppm	0.5	PASS	<loq< td=""><td>Reage</td></loq<>	Reage
MIDACLOPRID	0.05	ppm	0.5	PASS	<loq< td=""><td>Consu</td></loq<>	Consu
MYCLOBUTANIL	0.05	ppm	0.4	PASS	<loq< td=""><td>Pesticio</td></loq<>	Pesticio
PIPERONYL BUTOXIDE	0.05	ppm	3	PASS	<loq< td=""><td>regulat</td></loq<>	regulat
PACLOBUTRAZOL	0.05	ppm	0.0001	PASS	<loq< td=""><td>Analyz</td></loq<>	Analyz
PYRETHRINS	0.05	ppm	2	PASS	<loq< td=""><td>888, 1</td></loq<>	888, 1
SPINETORAM	0.05	ppm	1	PASS	<loq< td=""><td>Analys</td></loq<>	Analys
SPINOSAD	0.05	ppm	1	PASS	<loq< td=""><td>Analyt</td></loq<>	Analyt
SPIROTETRAMAT	0.05	ppm	1	PASS	<loq< td=""><td>Instru</td></loq<>	Instru
THIAMETHOXAM	0.05	ppm	0.4	PASS	<loq< td=""><td>Analyz</td></loq<>	Analyz
TRIFLOXYSTROBIN	0.05	ppm	1	PASS	<loq< td=""><td>Dilutio</td></loq<>	Dilutio

CYPERMETHRIN *		0.05	ppm	Level 0.0001	PASS	<l00< th=""></l00<>
CYFLUTHRIN *		0.05	ppm	2	PASS	<loq< td=""></loq<>
PENTACHLORONITROBI	ENZENE (PCNB) *	0.05	ppm	0.8	PASS	<loq< td=""></loq<>
Analyzed by: 1662, 888, 1526	Weight: 0.214g		ion date: 4 11:53:33		Extracted 1590,888	by:
Analysis Method: SOP.T Analytical Batch: LA005		40.101.NV			/24 11:20:53	
Instrument Used : Shima			Batch D	ate:04/23/2	4 17:12:34	
Instrument Used : Shim Analyzed Date : N/A Dilution : 5 Reagent : 032724.R05; Consumables : 2022010	021424.R24; 02132 03; 042c6; 251697		324.R11; 0	32724.R16; 0	032724.R17; 03	32724.R06
Instrument Used : Shim Analyzed Date : N/A Dilution : 5 Reagent : 032724.R05; Consumables : 2022010	adzu LCMS-8060 021424.R24; 02132 03; 042c6; 251697 .PIP-019; LV-PIP-040 formed using LC-MS	; LV-PIP-04 (Liquid Chro	324.R11; 0 1; LV-PIP-0 matograph	32724.R16; 0 30; LV-PIP-03 y with Mass S	032724.R17; 03 4; LV-PIP-020	
Instrument Used :Shim. Analyzed Date : N/A Dilution : 5 Reagent : 032724.R05; Consumables : 2022010 Pipette : LV-PIP-039; LV- Pesticide screening is perf	adzu LCMS-8060 021424.R24; 02132 03; 042c6; 251697 .PIP-019; LV-PIP-040 formed using LC-MS	(Liquid Chro V and SOP.T Extract	324.R11; 0 1; LV-PIP-0 matograph	32724.R16; 0 30; LV-PIP-03 y with Mass S	032724.R17; 03 4; LV-PIP-020	tection) for

Reagent: 1032/24.nvp, vcarzanian, 05-20 Consumables: 20220103; 042c6; 251697 Pipette: LV-PIP-039; LV-PIP-019; LV-PIP-040; LV-PIP-041; LV-PIP-030; LV-PIP-034; LV-PIP-020

Pesticide screening is performed using GC (Gas Chromatography with Mass Spectrometry Detection) for regulated pesticides following SOP.T.30.151.NV and SOP.T.40.151.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds

variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

4.363

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

PASSED

Sample : LA40423009-005 Harvest/Lot ID: 032404 Sampled: 04/23/24 Ordered: 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method : SOP Client Method

Reviewed On: 04/29/24 16:08:20 **Batch Date:** 04/25/24 14:24:12

Page 4 of 7

Residual Solvents

PASSED

Solvents	LOQ	Units	Action I	Level Pass/Fail	Result
PROPANE	100.0000	ppm	499.5	PASS	<l0q< th=""></l0q<>
BUTANES	100.0000	ppm	499.5	PASS	<l0q< th=""></l0q<>
HEPTANE	100.0000	ppm	499.5	PASS	<l0q< th=""></l0q<>
ETHANOL	100.0000	ppm		TESTED	<loq< th=""></loq<>

Analyzed by: 880, 879, 1526 Extraction date: Extracted by: N/A N/A

Analysis Method : SOP.T.40.041.NV Analytical Batch: LA005263SOL Instrument Used: LV-GCMS-001 Analyzed Date : N/A

Dilution: N/A

Reagent: 062420.02; 082423.01; 040323.05

Pipette: 25C, Hamilton Gastight syringe, 25uL; GT6, Hamilton Gastight Syringe, 10 ul

Residual solvent screening is performed by Headspace Gas Chromatography with Mass spectrometry following SOP.T.40.041.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

4.363

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

PASSED

Sample : LA40423009-005 Harvest/Lot ID: 032404 Sampled: 04/23/24 Ordered: 04/23/24

Reviewed On: 04/30/24 22:15:02

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method : SOP Client Method

Page 5 of 7

Microbial

Mycotoxins

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
SALMONELLA			Not Present	PASS	
STEC			Not Present	PASS	
ENTEROBACTERIACEAE	100	cfu/g	<loq< th=""><th>PASS</th><th>999</th></loq<>	PASS	999
YEAST AND MOLD	1000	cfu/g	<loq< th=""><th>PASS</th><th>9999</th></loq<>	PASS	9999

Analyzed by: 1798, 1878, 1526 Extraction date: Extracted by: 04/23/24 15:16:59

Analysis Method: SOP.T.40.058.FL; SOP.T.40.059B Analytical Batch: LA005241MIC

Instrument Used: LV-PCR-003A (Gene-Up) (Asp)

Batch Date : 04/23/24 14:21:14 Analyzed Date: N/A

Dilution: N/A

Reagent: 042324.R07; 041324.R08

Consumables: ASP1737; IS1094; 042c6; 258638; 245081

Pipette: LV-PIP-017; LV-PIP-019

Analyzed by:	Weight:	Extraction date:	Extracted by:
1798, 879, 1526	1.0785g	04/23/24 15:04:06	2008

Analysis Method: SOP.T.40.209.NV; SOP.T.40.208
Analytical Batch: LA005238TYM

Reviewed On: 04/29/24 16:10:33 Instrument Used: Micro plating with Flower, Edibles, TincturesBatch Date: 04/23/24 14:12:52

Standard Dilutions Analyzed Date : N/A

Reagent: 041924.R11

Consumables : 33N4WX; 418322349C; 418323027A; 33NJ59

Pipette: LV-PIP-017; LV-PIP-026; LV-PIP-021

Microbial testing is performed by a combination of agar and Petrifilm plating as well as PCR (Polymerase Chain Reaction) to test for Mold/Yeast, Total Aerobic Count, Enterobacteria, Coliforms, Salmonella, Pathogenic E Coli, and Aspergillus.

\$\hat{C}_{\text{c}}	
A I	

Analyte		LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AFLATOXIN	0.01	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02	
OCHRATOXIN A		0.01	ppm	<loq< th=""><th>PASS</th><th>0.02</th></loq<>	PASS	0.02
Analyzed by:	Weight:	Extraction dat	te:	Ex	xtracted l	oy:
1525, 888, 1526	0.214a	04/24/24 11:5	3.33	11	590 888	

Analysis Method : SOP.T.30.101.NV: SOP.T.40.101.NV

Analytical Batch : LA005253MYC Reviewed On: 04/26/24 12:41:49 Instrument Used : N/A Batch Date: 04/24/24 13:29:30 Analyzed Date: N/A

Dilution: 5

Reagent: 032724.R05; 021424.R24; 021324.R10; 042324.R11; 032724.R16; 032724.R17; 032724.R06

Consumables: 20220103; 042c6; 251697

Pipette : LV-PIP-039; LV-PIP-019; LV-PIP-040; LV-PIP-041; LV-PIP-030; LV-PIP-034; LV-PIP-020

Total Aflatoxins B1, B2, G1, G2, and Ochratoxin A screening are performed by LC/MS/MS following SOP.T.30.101.NV and SOP.T.40.101.NV.

Heavy Metals

PASSED

Metal		LOQ	Units	Result	Pass / Fail	Action Level
ARSENIC		0.167	ppm	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2
CADMIUM		0.167	ppm	<loq< th=""><th>PASS</th><th>0.82</th></loq<>	PASS	0.82
LEAD		0.167	ppm	<loq< th=""><th>PASS</th><th>1.2</th></loq<>	PASS	1.2
MERCURY		0.167	ppm	<loq< th=""><th>PASS</th><th>0.4</th></loq<>	PASS	0.4
Analyzed by: 1387, 1526	Weight: 0.4571g	Extraction da	ate:	Extra 1387	cted by: ,888	

Analysis Method: SOP.T.30.081.NV; SOP.T.40.081.NV

Analytical Batch : LA005258HEA Instrument Used : ICPMS-2 Shimadzu Reviewed On: 04/26/24 16:07:55 Batch Date: 04/25/24 10:39:12 Analyzed Date : N/A

Dilution: 50

Reagent: 112322.09; 081123.02; 092323.08; 010120.01

Consumables: 042c6; 251697 Pipette: LV-PIP-001; LV-PIP-023

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) using method SOP.T.30.081.NV and SOP.T.40.081.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

4-3 65

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

Sample : LA40423009-005 Harvest/Lot ID: 032404 Sampled: 04/23/24 Ordered: 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method: SOP Client Method

PASSED

Page 6 of 7

Filth/Foreign **Material**

Analyte Filth and Foreign M	aterial	LOQ	Units detect/g	Result <loq< th=""><th>P/F PASS</th><th>Action Level 0.001</th></loq<>	P/F PASS	Action Level 0.001
Analyzed by: N/A			raction date:	l	Extrac N/A	ted by:
Analysis Method : SOP Analytical Batch : N/A Instrument Used : N/A Analyzed Date : N/A	strument Used : N/A		viewed On : 0		4:25:21	
Dilution: N/A Reagent: N/A Consumables: N/A Pipette: N/A						

Samples are visually screened for foreign matter (hair, insects, packaging materials, etc.). For flower, stems >3 mm in diameter may only make up <5% of the sample.

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Salts Eucalyptus 16oz CBD Bath Salts Eucalyptus 16oz Matrix : Infused Product

PASSED

Type: Topical

Certificate of Analysis

Inesscents Aromatic Botanicals

(702) 728-5180

Sample : LA40423009-005 Harvest/Lot ID: 032404 Sampled : 04/23/24 Ordered : 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method: SOP Client Method Page 7 of 7

COMMENTS

* Confident Cannabis sample ID: 2404DBL0016.0496

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

