

4439 Polaris Ave. Las Vegas, NV, 89103, US (702) 728-5180

Certificate of Analysis

Summary COA (scan QR code for complete Certificate of Analysis)

May 01, 2024 | Inesscents Aromatic **Botanicals**

Kaycha Labs

CBD Bath Fizz Forest Bathing 14oz CBD Bath Fizz Forest Bathing 14oz Matrix: Infused Product

Type: Topical

Sample:LA40423009-006 Harvest/Lot ID: 142403

Laboratory License # CBD Sample Size Received: 1 units Retail Product Size: 397 mg Retail Serving Size: 1 mg

> Servings: 1 Ordered: 04/15/24 Sampled: 04/23/24 Completed: 05/01/24

PASSED

Pages 1 of 3

SAFETY RESULTS

Microbials **PASSED**

Mycotoxins **PASSED**

Solvents **PASSED**

Filth PASSED

Water Activity

Moisture **NOT TESTED**

Homogeneity Testing NOT TESTED

Terpenes **TESTED**

PASSED

1 unit = 1 container CBD Bath Fizz Forest Bathing, 397g

Cannabinoid

Total THC

0.0010%

Total CBD 0.0480%

Total Cannabinoids .0490%

								····g				
TOTAL CAN		-		-	-					-		
NABINOIDS 0.0490	CBDV <loq< td=""><td>CBDA <loq< td=""><td>CBGA <loq< td=""><td>CBG <loq< td=""><td>O.0480</td><td>THCV <loq< td=""><td>CBN <loq< td=""><td>0.0010</td><td>D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	CBDA <loq< td=""><td>CBGA <loq< td=""><td>CBG <loq< td=""><td>O.0480</td><td>THCV <loq< td=""><td>CBN <loq< td=""><td>0.0010</td><td>D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	CBGA <loq< td=""><td>CBG <loq< td=""><td>O.0480</td><td>THCV <loq< td=""><td>CBN <loq< td=""><td>0.0010</td><td>D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	CBG <loq< td=""><td>O.0480</td><td>THCV <loq< td=""><td>CBN <loq< td=""><td>0.0010</td><td>D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	O.0480	THCV <loq< td=""><td>CBN <loq< td=""><td>0.0010</td><td>D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	CBN <loq< td=""><td>0.0010</td><td>D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0.0010	D8-THC <loq< td=""><td>CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<></td></loq<>	CBC <loq< td=""><td>THCA <loq< td=""></loq<></td></loq<>	THCA <loq< td=""></loq<>	
194.530	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>190.560</td><td><l0q< td=""><td><loq< td=""><td>3.970</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>190.560</td><td><l0q< td=""><td><loq< td=""><td>3.970</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>190.560</td><td><l0q< td=""><td><loq< td=""><td>3.970</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>190.560</td><td><l0q< td=""><td><loq< td=""><td>3.970</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	190.560	<l0q< td=""><td><loq< td=""><td>3.970</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>3.970</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<>	3.970	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>	
0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	
		%	%	%	%	%	%	%	%	%	%	

Analyzed by: 877, 1525, 879, 1526 Extraction date: 04/26/24 09:56:24 Extracted by:

Analysis Method: SOP.T.30.031.NV: SOP.T.40.031.NV

Analytical Batch: LA005247PO7 Instrument Used: LV-SHIM-003 Analyzed Date : N/A

Reviewed On: 04/26/24 14:28:40 Batch Date: 04/24/24 10:12:52

mg/unit LOO

Dilution: 19
Reagent: 120723.25; 040224.01; 090523.07; 030924.09; 042524.R03; 041824.R06
Consumables: 20220103; 042c6; 257747; 258638

Pipette: LV-PIP-015; LV-PIP-008; LV-PIP-023

Cannabinoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP.T.30.031.NV for sample preparation and SOP.T.40.031.NV for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Signature 05/01/24

4439 Polaris Ave. Las Vegas, NV, 89103, US (702) 728-5180

Kaycha Labs

CBD Bath Fizz Forest Bathing 14oz CBD Bath Fizz Forest Bathing 14oz Matrix : Infused Product

thing 1402 ed Product

Type: Topical

Certificate of Analysis

PASSED

Inesscents Aromatic Botanicals

Sample : LA40423009-006 Harvest/Lot ID: 142403 Sampled : 04/23/24 Ordered : 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method: SOP Client Method Page 2 of 3

Terpenes

TESTED

Terpenes	LOQ (%)	mg/unit	t %	Result (%)	Terpenes	LOQ (%)	mg/uni	t %	Result (%)	
TOTAL TERPENES	0.0200	408.910	0.1030		ALPHA-PHELLANDRENE	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
ALPHA-PINENE	0.0200	174.680	0.0440		ALPHA-TERPINENE	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
BETA-PINENE	0.0200	127.040	0.0320		ALPHA-TERPINEOL	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
DELTA-3-CARENE	0.0200	107.190	0.0270		BETA-CARYOPHYLLENE	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
BORNEOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>BETA-MYRCENE</td><td>0.020</td><td>0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><td>BETA-MYRCENE</td><td>0.020</td><td>0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<>		BETA-MYRCENE	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
CAMPHENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td>D-LIMONENE</td><td>0.020</td><td>0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><td>D-LIMONENE</td><td>0.020</td><td>0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<>		D-LIMONENE	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
CAMPHOR	0.0200	<loq< td=""><td><loq< td=""><td></td><td>GAMMA-TERPINENE</td><td>0.020</td><td>0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><td>GAMMA-TERPINENE</td><td>0.020</td><td>0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<></td></loq<>		GAMMA-TERPINENE	0.020	0 <loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
CARYOPHYLLENE OXIDE	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Analyzed by:</td><td>Weight:</td><td>Ex</td><td>raction date</td><td>:</td><td>Extracted by:</td></loq<></td></loq<>	<loq< td=""><td></td><td>Analyzed by:</td><td>Weight:</td><td>Ex</td><td>raction date</td><td>:</td><td>Extracted by:</td></loq<>		Analyzed by:	Weight:	Ex	raction date	:	Extracted by:
CEDROL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>880, 879, 1526</td><td>1.0713g</td><td>N/A</td><td></td><td></td><td>880</td></loq<></td></loq<>	<loq< td=""><td></td><td>880, 879, 1526</td><td>1.0713g</td><td>N/A</td><td></td><td></td><td>880</td></loq<>		880, 879, 1526	1.0713g	N/A			880
EUCALYPTOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Analysis Method : SOP.T.30.061.NV; SOP</td><td>T.40.061.NV</td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Analysis Method : SOP.T.30.061.NV; SOP</td><td>T.40.061.NV</td><td></td><td></td><td></td><td></td></loq<>		Analysis Method : SOP.T.30.061.NV; SOP	T.40.061.NV				
FARNESENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Analytical Batch : LA005254TER</td><td></td><td></td><td></td><td>4/29/24 16:09:27</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Analytical Batch : LA005254TER</td><td></td><td></td><td></td><td>4/29/24 16:09:27</td><td></td></loq<>		Analytical Batch : LA005254TER				4/29/24 16:09:27	
FENCHONE	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Instrument Used: LV-GCMS-002 Analyzed Date: 04/25/24 18:55:50</td><td></td><td>Batc</td><td>n pate: 04/2</td><td>24/24 14:45:50</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Instrument Used: LV-GCMS-002 Analyzed Date: 04/25/24 18:55:50</td><td></td><td>Batc</td><td>n pate: 04/2</td><td>24/24 14:45:50</td><td></td></loq<>		Instrument Used: LV-GCMS-002 Analyzed Date: 04/25/24 18:55:50		Batc	n pate: 04/2	24/24 14:45:50	
FENCHYL ALCOHOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Dilution: 10</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Dilution: 10</td><td></td><td></td><td></td><td></td><td></td></loq<>		Dilution: 10					
GERANIOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Reagent: 120523.05; 031424.01; 03142</td><td>24.04; 010120.01; 030</td><td>924.21</td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Reagent: 120523.05; 031424.01; 03142</td><td>24.04; 010120.01; 030</td><td>924.21</td><td></td><td></td><td></td></loq<>		Reagent: 120523.05; 031424.01; 03142	24.04; 010120.01; 030	924.21			
GERANYL ACETATE	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Consumables: 0123; 2911002215; 2022</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Consumables: 0123; 2911002215; 2022</td><td></td><td></td><td></td><td></td><td></td></loq<>		Consumables: 0123; 2911002215; 2022					
GUAIOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Pipette: LV-PIP-027; LV-PIP-028; LV-PIP-0</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Pipette: LV-PIP-027; LV-PIP-028; LV-PIP-0</td><td></td><td></td><td></td><td></td><td></td></loq<>		Pipette: LV-PIP-027; LV-PIP-028; LV-PIP-0					
HEXAHYDROTHYMOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Terpene screening is performed using gas chr</td><td>omatography with mass</td><td>spectrometry foll</td><td>owing SOP.T.3</td><td>0.061.NV and SOP.T.40</td><td>0.061.NV.</td></loq<></td></loq<>	<loq< td=""><td></td><td>Terpene screening is performed using gas chr</td><td>omatography with mass</td><td>spectrometry foll</td><td>owing SOP.T.3</td><td>0.061.NV and SOP.T.40</td><td>0.061.NV.</td></loq<>		Terpene screening is performed using gas chr	omatography with mass	spectrometry foll	owing SOP.T.3	0.061.NV and SOP.T.40	0.061.NV.
ISOBORNEOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
SOPULEGOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
LINALOOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
NEROL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
NEROLIDOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
DCIMENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
PULEGONE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
SABINENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
SABINENE HYDRATE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
TERPINOLENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
/ALENCENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
ALPHA-BISABOLOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
ALPHA-CEDRENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
ALPHA-HUMULENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
otal (%)			0.1030							

Iotai (%)

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Signature 05/01/24

Las Vegas, NV, 89103, US (702) 728-5180

Kaycha Labs

CBD Bath Fizz Forest Bathing 14oz CBD Bath Fizz Forest Bathing 14oz Matrix: Infused Product Type: Topical

PASSED

Certificate of Analysis

Sample : LA40423009-006 Harvest/Lot ID: 142403 Sampled: 04/23/24 Ordered: 04/23/24

Sample Size Received: 1 units Completed: 05/01/24 Expires: 05/01/25 Sample Method: SOP Client Method

Page 3 of 3

COMMENTS

* Confident Cannabis sample ID: 2404DBL0016.0497

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Signature 05/01/24