

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix: Infused Product

Type: Topical

Sample:LA40702006-005 Harvest/Lot ID: 012405

Laboratory License # 69204305475717257553

Sample Size Received: 453 gram Total Amount: 453 units

Retail Product Size: 453.592 gram

Retail Serving Size: 1 gram

Servings: 453 Ordered: 07/01/24 Sampled: 07/02/24

Completed: 07/08/24

Certificate of Analysis

Jul 08, 2024 | Inesscents Aromatic **Botanicals**

PASSED

Pages 1 of 7

SAFETY RESULTS

Solvents **PASSED**

PASSED

NOT TESTED

Moisture **NOT TESTED**

Homogeneity Testing **NOT TESTED**

Terpenes **TESTED**

PASSED

1 unit = 1 container CBD Bath Salt Lavender, 453.592g

Cannabinoid

Total CBD 0.0260%

Total Cannabinoids 0.0260%

Total Cannabinoids/Container: 117.9330

										ilig		
	TOTAL CAN	CBDV	CBDA	CBGA	CBG	CBD	тнсу	CBN	D9-THC	D8-THC	СВС	THCA
%	0.0260	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td>0.0260</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td>0.0260</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td>0.0260</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td>0.0260</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	0.0260	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
mg/unit	117.933	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>117.933</td><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>117.933</td><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>117.933</td><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>117.933</td><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	117.933	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
LOQ	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
	%	%	%	%	%	%	%	%	%	%	%	%
alyzed by: 25, 2032, 888,	1526			Weight: 2 9749a		Extraction da				Extracted 1525 203		

Analysis Method: SOP.T.30.031.NV; SOP.T.40.031.NV Analytical Batch: LA005860POT

Instrument Used : LV-SHIM-002 Analyzed Date : N/A

Dilution: 21.5

Dilution: 21.3 Reagent: 120723.25; 060424.01; 060624.01; 030924.09; 070324.R08; 070324.R05 Consumables: 20220103; 258638; 1008451138; 245081 Pipette: LV-PIP-015; LV-PIP-008; LV-PIP-023

abinoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP.T.30.031.NV for sample preparation and SOP.T.40.031.NV for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877

Reviewed On: 07/08/24 18:00:19

Batch Date: 07/03/24 15:23:48

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

Sample : LA40702006-005 Harvest/Lot ID: 012405 Sampled: 07/02/24 Ordered: 07/02/24

Sample Size Received: 453 gram Total Amount : 453 units Completed: 07/08/24 Expires: 07/08/25 Sample Method: SOP Client Method

Page 2 of 7

Terpenes

TESTED

PASSED

Terpenes	LOQ (%)	mg/unit	%	Result (%)	Terpenes		LOQ (%)	mg/unit	%	Result (%)	
OTAL TERPENES	0.0200	2059.307	0.4540		VALENCENE		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
INALOOL	0.0200	390.089	0.0860		ALPHA-BISABOLOL		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
ARNESENE	0.0200	176.900	0.0390		ALPHA-CEDRENE		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
D-LIMONENE	0.0200	163.293	0.0360		ALPHA-HUMULENE		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
BETA-MYRCENE	0.0200	158.757	0.0350		ALPHA-PHELLANDRENE		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
BETA-CARYOPHYLLENE	0.0200	145.149	0.0320		ALPHA-PINENE		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
ERANYL ACETATE	0.0200	136.077	0.0300		DELTA-3-CARENE		0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
ERPINOLENE	0.0200	136.077	0.0300		Analyzed by:	Weight:	Ex	traction date	2:		Extracted by:
CIMENE	0.0200	131.541	0.0290		880, 879, 1526	1.0726g		/06/24 13:05			880,879
SAMMA-TERPINENE	0.0200	117.933	0.0260		Analysis Method : SOP.T.30.061.N	V; SOP.T.40.061.NV					
BETA-PINENE	0.0200	108.862	0.0240		Analytical Batch : LA005861TER					7/06/24 13:36:02	
LPHA-TERPINEOL	0.0200	104.326	0.0230		Instrument Used : LV-GCMS-002 Analyzed Date : N/A			Batch	Date: 07/	03/24 16:41:41	
ABINENE	0.0200	99.790	0.0220		Dilution : 50						
ABINENE HYDRATE	0.0200	95.254	0.0210		Reagent: 120523.08; 061324.03;						
LPHA-TERPINENE	0.0200	95.254	0.0210		Consumables: 0123; 2911002215	s; 042c6; 251697					
ORNEOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Pipette: LV-PIP-027; LV-PIP-028</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Pipette: LV-PIP-027; LV-PIP-028</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>		Pipette: LV-PIP-027; LV-PIP-028						
AMPHENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td>Terpene screening is performed using</td><td>gas chromatography wit</td><td>n mass spec</td><td>trometry follow</td><td>wing SOP.T.:</td><td>80.061.NV and SOP.T.40</td><td>.061.NV.</td></loq<></td></loq<>	<loq< td=""><td></td><td>Terpene screening is performed using</td><td>gas chromatography wit</td><td>n mass spec</td><td>trometry follow</td><td>wing SOP.T.:</td><td>80.061.NV and SOP.T.40</td><td>.061.NV.</td></loq<>		Terpene screening is performed using	gas chromatography wit	n mass spec	trometry follow	wing SOP.T.:	80.061.NV and SOP.T.40	.061.NV.
AMPHOR	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
ARYOPHYLLENE OXIDE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
EDROL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
UCALYPTOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
ENCHOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
ENCHONE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
GERANIOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
UAIOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
HEXAHYDROTHYMOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
SOBORNEOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
SOPULEGOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
IEROL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
MEROLIDOL	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
PULEGONE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>								
otal (%)			0.4540								

Total (%) 0.4540

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix : Infused Product

Type: Topical

Certificate of Analysis

PASSED

Inesscents Aromatic Botanicals

Sample : LA40702006-005 Harvest/Lot ID: 012405 Sampled : 07/02/24

Ordered: 07/02/24

Sample Size Received: 453 gram
Total Amount: 453 units
Completed: 07/08/24 Expires: 07/08/25
Sample Method: SOP Client Method

Page 3 of 7

Pesticides

PASSED

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result	Pesticide		LOQ	Units	Action Level	Pass/Fail	Result
ABAMECTIN	0.05	ppm	0.0001	PASS	<loq< td=""><td>PENTACHLORONITROB</td><td>ENZENE (PCNB) *</td><td>0.05</td><td>ppm</td><td>0.8</td><td>PASS</td><td><loq< td=""></loq<></td></loq<>	PENTACHLORONITROB	ENZENE (PCNB) *	0.05	ppm	0.8	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.05	ppm	4	PASS	<loq< td=""><td>Analyzed by:</td><td>Weight:</td><td>Evtrac</td><td>tion date:</td><td></td><td>Extracted b</td><td>v.</td></loq<>	Analyzed by:	Weight:	Evtrac	tion date:		Extracted b	v.
BIFENAZATE	0.05	ppm	0.4	PASS	<loq< td=""><td>888, 1526</td><td>NA</td><td>N/A</td><td>tion date.</td><td></td><td>N/A</td><td>у.</td></loq<>	888, 1526	NA	N/A	tion date.		N/A	у.
BIFENTHRIN	0.05	ppm	0.0001	PASS	<loq< td=""><td>Analysis Method : SOP.</td><td>T.30.101.NV: SOP.T.4</td><td>0.101.NV</td><td></td><td></td><td>,</td><td></td></loq<>	Analysis Method : SOP.	T.30.101.NV: SOP.T.4	0.101.NV			,	
YFLUTHRIN	0.05	ppm	2	PASS	<loq< td=""><td>Analytical Batch : LA00</td><td></td><td></td><td>Reviewe</td><td>d On:07/08</td><td>/24 17:48:00</td><td></td></loq<>	Analytical Batch : LA00			Reviewe	d On:07/08	/24 17:48:00	
YPERMETHRIN	0.05	ppm	0.0001	PASS	<loq< td=""><td>Instrument Used : Shim</td><td></td><td></td><td>Batch Da</td><td>ite:07/02/2</td><td>4 17:58:22</td><td></td></loq<>	Instrument Used : Shim			Batch Da	ite:07/02/2	4 17:58:22	
AMINOZIDE	0.05	ppm	0.0001	PASS	<loq< td=""><td>Analyzed Date: 07/08/2</td><td>24 08:58:35</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 07/08/2	24 08:58:35					
DIMETHOMORPH	0.05	ppm	2	PASS	<loq< td=""><td>Dilution: N/A</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>	Dilution: N/A						
TOXAZOLE	0.05	ppm	0.4	PASS	<loq< td=""><td>Reagent: 032724.R05; Consumables: 202201</td><td></td><td>.R11; 0620</td><td>)24.R07; 06</td><td>2524.R03; 0</td><td>61124.R05; 03</td><td>32724.R</td></loq<>	Reagent: 032724.R05; Consumables: 202201		.R11; 0620)24.R07; 06	2524.R03; 0	61124.R05; 03	32724.R
ENHEXAMID	0.05	ppm	1	PASS	<loq< td=""><td>Pipette: LV-PIP-039; LV</td><td> ,</td><td>I \/_DID_O/I</td><td>1 · 1 \/_DID_03</td><td>/ · I \/_DID_∩?</td><td>0</td><td></td></loq<>	Pipette: LV-PIP-039; LV	,	I \/_DID_O/I	1 · 1 \/_DID_03	/ · I \/_DID_∩?	0	
ENOXYCARB	0.05	ppm	0.0001	PASS	<loq< td=""><td>Pesticide screening is per</td><td></td><td></td><td></td><td></td><td></td><td>tection)</td></loq<>	Pesticide screening is per						tection)
LONICAMID	0.05	ppm	1	PASS	<loq< td=""><td>regulated pesticides follo</td><td></td><td></td><td></td><td>WIGH HIGGS S</td><td>pectrometry be</td><td>.cccion,</td></loq<>	regulated pesticides follo				WIGH HIGGS S	pectrometry be	.cccion,
LUDIOXONIL	0.05	ppm	0.5	PASS	<loq< td=""><td>Analyzed by:</td><td>Weight:</td><td>Extrac</td><td>tion date:</td><td></td><td>Extracted b</td><td>v:</td></loq<>	Analyzed by:	Weight:	Extrac	tion date:		Extracted b	v:
MIDACLOPRID	0.05	ppm	0.5	PASS	<loq< td=""><td>888, 1526</td><td>NA</td><td>N/A</td><td></td><td></td><td>N/A</td><td>-</td></loq<>	888, 1526	NA	N/A			N/A	-
IYCLOBUTANIL	0.05	ppm	0.4	PASS	<loq< td=""><td>Analysis Method : SOP.</td><td>T.30.151.NV; SOP.T.4</td><td>0.151.NV</td><td></td><td></td><td></td><td></td></loq<>	Analysis Method : SOP.	T.30.151.NV; SOP.T.4	0.151.NV				
IPERONYL BUTOXIDE	0.05	ppm	3	PASS	<loq< td=""><td>Analytical Batch: LA00</td><td></td><td></td><td></td><td></td><td>08/24 17:49:30</td><td></td></loq<>	Analytical Batch: LA00					08/24 17:49:30	
ACLOBUTRAZOL	0.05	ppm	0.0001	PASS	<loq< td=""><td>Instrument Used : Shim</td><td></td><td></td><td>Batch I</td><td>Date: 07/02</td><td>/24 18:02:08</td><td></td></loq<>	Instrument Used : Shim			Batch I	Date: 07/02	/24 18:02:08	
YRETHRINS	0.05	ppm	2	PASS	<loq< td=""><td>Analyzed Date: 07/08/2 Dilution: N/A</td><td>24 09:14:47</td><td></td><td></td><td></td><td></td><td></td></loq<>	Analyzed Date: 07/08/2 Dilution: N/A	24 09:14:47					
PINETORAM	0.05	ppm	1	PASS	<loq< td=""><td>Reagent: 032724.R05;</td><td>061724 P16: 062424</td><td>P11: 0620</td><td>124 P07: 06</td><td>2524 P03-0</td><td>61124 P05: 03</td><td>277/ P</td></loq<>	Reagent: 032724.R05;	061724 P16: 062424	P11: 0620	124 P07: 06	2524 P03-0	61124 P05: 03	277/ P
SPINOSAD	0.05	ppm	1	PASS	<loq< td=""><td>Consumables: 202201</td><td></td><td>, 0021</td><td>727.1107, 00</td><td>2327.NU3, C</td><td>01124.NUJ, U.</td><td>12124.NI</td></loq<>	Consumables: 202201		, 0021	727.1107, 00	2327.NU3, C	01124.NUJ, U.	12124.NI
PIROTETRAMAT	0.05	ppm	1	PASS	<loq< td=""><td>Pipette : LV-PIP-039; LV</td><td></td><td>LV-PIP-04</td><td>1; LV-PIP-03</td><td>4; LV-PIP-02</td><td>0</td><td></td></loq<>	Pipette : LV-PIP-039; LV		LV-PIP-04	1; LV-PIP-03	4; LV-PIP-02	0	
	0.05	maa	0.4	PASS	<l00< td=""><td>Pesticide screening is per</td><td>rformed using GC (Gas</td><td>Chromato</td><td>graphy with</td><td>Mass Spectro</td><td>metry Detection</td><td>n) for</td></l00<>	Pesticide screening is per	rformed using GC (Gas	Chromato	graphy with	Mass Spectro	metry Detection	n) for
HIAMETHOXAM												

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164 4-365

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix: Infused Product

PASSED

Type: Topical

Certificate of Analysis

Sample : LA40702006-005 Harvest/Lot ID: 012405 Sampled: 07/02/24

Ordered: 07/02/24

Sample Size Received: 453 gram Total Amount: 453 units Completed: 07/08/24 Expires: 07/08/25 Sample Method: SOP Client Method

Reviewed On: 07/06/24 11:12:52

Batch Date: 07/05/24 16:33:04

Page 4 of 7

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
PROPANE	100.0000	ppm	499.5	PASS	<loq< td=""></loq<>
BUTANES	100.0000	ppm	499.5	PASS	<loq< td=""></loq<>
HEPTANE	100.0000	ppm	499.5	PASS	<loq< td=""></loq<>
ETHANOL	100.0000	ppm		TESTED	<loq< td=""></loq<>

Extraction date: Analyzed by: 879, 1526 Weight: Extracted by: 0.018g 07/06/24 11:01:51

Analysis Method : SOP.T.40.041.NV Analytical Batch : LA005873SOL Instrument Used: LV-GCMS-001 Analyzed Date: N/A

Dilution: N/A Reagent : N/A Consumables: N/A Pipette: N/A

Residual solvent screening is performed by Headspace Gas Chromatography with Mass spectrometry following SOP.T.40.041.NV

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

PASSED

Sample : LA40702006-005 Harvest/Lot ID: 012405 Sampled: 07/02/24

Ordered: 07/02/24

Sample Size Received: 453 gram Total Amount: 453 units Completed: 07/08/24 Expires: 07/08/25 Sample Method: SOP Client Method

Page 5 of 7

Microbial

PASSED

Reviewed On: 07/08/24 18:32:11

Batch Date: 07/02/24 12:52:38

Mycotoxins

PASSED

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
STEC			Not Present	PASS	
SALMONELLA			Not Present	PASS	
ENTEROBACTERIACEAE	100	cfu/g	<loq< th=""><th>PASS</th><th>999</th></loq<>	PASS	999
YEAST AND MOLD	1000	cfu/g	<loq< th=""><th>PASS</th><th>9999</th></loq<>	PASS	9999
Analyzed by: 1798, 1663, 888, 1526	Weight: 1.1936g	Extraction 07/03/24 1		Extracte 1798	d by:

Analysis Method: SOP.T.40.058.FL: SOP.T.40.059B

Analytical Batch : LA005844MIC

Instrument Used: LV-PCR-004 (Pathogen Dx MiniAmp

Thermal Cycler) Analyzed Date: N/A

Dilution: N/A Reagent: 061924.R05

Consumables: W03999; W03895; W03882; 042c6; 251697; 258638 Pipette: LV-PIP-026; LV-PIP-021; LV-PIP-044; LV-PIP-048; LV-PIP-065

Analyzed by: 2008, 1798, 888, 1526 Extraction date: Extracted by: 1798 N/A

Analysis Method: SOP.T.40.209.NV; SOP.T.40.208

Reviewed On: 07/08/24 18:02:56 Analytical Batch : LA005843TYM

Instrument Used: Micro plating with Flower, Edibles, TincturesBatch Date: 07/02/24 12:51:45 Standard Dilutions

Analyzed Date: N/A

Dilution: N/A Reagent: 062624.R04

Consumables: 33NLN4; 418323095E; 418323077C; 33TNFP; 042c6

Pipette : LV-PIP-021; LV-PIP-044; LV-PIP-048; LV-PIP-065

Microbial testing is performed by a combination of agar and Petrifilm plating as well as PCR (Polymerase Chain Reaction) to test for Mold/Yeast, Total Aerobic Count, Enterobacteria, Coliforms, Salmonella, Pathogenic E Coli, and Aspergillus.

<u></u> ئ
δ,

Analyte	LOQ	Units	Result	Pass / Fail	Action Level		
TOTAL AFLATOXINS (OCHRATOXIN A	0.01 0.01	ppm ppm	<loq <loq< th=""><th></th><th>0.02 0.02</th><th></th></loq<></loq 		0.02 0.02		
Analyzed by: 388, 1526	Weight: NA	Extraction da	ate:	Ext N/A	racted by	/ :	

Analysis Method: SOP.T.30.101.NV: SOP.T.40.101.NV

Analytical Batch : LA005851MYC
Instrument Used : Shimadzu LCMS 8060 Reviewed On: 07/08/24 17:59:12 Batch Date: 07/02/24 18:02:16 **Analyzed Date :** 07/08/24 09:15:04

Dilution: N/A

Reagent: 032724.R05; 061724.R16; 062424.R11; 062024.R07; 062524.R03; 061124.R05;

Consumables: 20220103: 042c6: 251697

Pipette : LV-PIP-039; LV-PIP-019; LV-PIP-040; LV-PIP-041; LV-PIP-034; LV-PIP-020

Total Aflatoxins B1, B2, G1, G2, and Ochratoxin A screening are performed by LC/MS/MS following SOP.T.30.101.NV and SOP.T.40.101.NV.

Heavy Metals

PASSED

-							
Metal		LOQ	Units	Result	Pass / Fail	Action Level	
- ARSENIC		0.167	ppm	<loq< th=""><th>PASS</th><th>2</th><th></th></loq<>	PASS	2	
CADMIUM		0.167	ppm	<loq< th=""><th>PASS</th><th>0.82</th><th></th></loq<>	PASS	0.82	
LEAD		0.167	ppm	<loq< th=""><th>PASS</th><th>1.2</th><th></th></loq<>	PASS	1.2	
MERCURY		0.167	ppm	<loq< th=""><th>PASS</th><th>0.4</th><th></th></loq<>	PASS	0.4	
Analyzed by: 1387, 1526	Weight: NA	Extraction da N/A	ite:	Extr 138	acted by:	:	

Analysis Method: SOP.T.30.081.NV; SOP.T.40.081.NV
Analytical Batch: LA005853HEA Rev

Reviewed On: 07/08/24 07:39:13 Instrument Used : ICPMS-2 Shimadzu Batch Date: 07/03/24 08:38:39 Analyzed Date : N/A

Dilution: 50

Reagent: 112322.09; 081123.02; 092323.08; 010120.01

Consumables: 251697 Pipette: LV-PIP-017; LV-PIP-023

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) using method SOP.T.30.081.NV and SOP.T.40.081.NV.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg Lab Director

17025:2017: 97164

State License # L003 ISO 17025 Accreditation # ISO/IEC

4-3 65

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

Sample : LA40702006-005 Harvest/Lot ID: 012405 Sampled: 07/02/24 Ordered: 07/02/24

Sample Size Received: 453 gram Total Amount: 453 units Completed: 07/08/24 Expires: 07/08/25 Sample Method: SOP Client Method

PASSED

Page 6 of 7

PASSED

Analyte Filth and Foreign Material		LOQ	Units detect/g	Result <loq< th=""><th colspan="4"></th></loq<>				
Analyzed by: N/A	Ext N/A	raction date	Extracted by: N/A					
Analysis Method : S Analytical Batch : N Instrument Used : N Analyzed Date : N/A	/A I/A		viewed On : tch Date : N/		0:35:05			

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Samples are visually screened for foreign matter (hair, insects, packaging materials, etc.). For flower, stems >3 mm in diameter may only make up <5% of the sample.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg Lab Director

17025:2017: 97164

State License # L003 ISO 17025 Accreditation # ISO/IEC

4.363

Kaycha Labs

CBD Bath Salt Lavender 16oz CBD Bath Salt Lavender 16oz Matrix : Infused Product Type: Topical

PASSED

Certificate of Analysis

Inesscents Aromatic Botanicals

Sample : LA40702006-005 Harvest/Lot ID: 012405 Sampled : 07/02/24 Ordered : 07/02/24

Sample Size Received: 453 gram
Total Amount: 453 units
Completed: 07/08/24 Expires: 07/08/25
Sample Method: SOP Client Method

Page 7 of 7

COMMENTS

* Confident Cannabis sample ID: 2407DBL0001.0804

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164 4-365