

4439 Polaris Ave. Las Vegas, NV, 89103, US (833) 465-8378

Kaycha Labs

CBD Botanically Infused Bath Salt - Lavender 16oz Matrix: Infused Product

Type: Topical

Certificate of Analysis

Summary COA (scan QR code for complete Certificate of Analysis)

Oct 24, 2024 | Inesscents Aromatic **Botanicals**

Sample:LA41014007-004

Lot/Production Run# 042410

Laboratory License # 69204305475717257553

Batch Date: 10/04/24

Sample Size Received: 453 gram

Total Amount: 1 units

Retail Product Size: 453 gram Retail Serving Size: 113.25 gram

Servings: 4

Ordered: 10/09/24 Sampled: 10/14/24

Completed: 10/24/24

PASSED

Pages 1 of 2

SAFETY RESULTS

Heavy Metals **PASSED**

Microbials **PASSED**

Residuals **PASSED**

Solvents **PASSED**

Filth PASSED

Batch Date: 10/15/24 09:45:10

Water Activity

Moisture **NOT TESTED**

Homogeneity Testing NOT TESTED

Terpenes **TESTED**

PASSED

1 unit = 1 container CBD Botanically Infused Bath Salt - Lavender, 453g

Cannabinoid

Total THC

Total CBD 0.0462%

Total Cannabinoids .0489%

										···g			
		_					_						
	TOTAL CAN												
	NABINOIDS	CBDV	CBDA	CBGA	CBG	CBD	THCV	CBN	D9-THC	D8-THC	CBC	THCA	
%	0.0489	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0.0013</td><td>0.0462</td><td><loq< td=""><td><loq< td=""><td>0.0014</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0.0013</td><td>0.0462</td><td><loq< td=""><td><loq< td=""><td>0.0014</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.0013</td><td>0.0462</td><td><loq< td=""><td><loq< td=""><td>0.0014</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0.0013	0.0462	<loq< td=""><td><loq< td=""><td>0.0014</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0.0014</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0.0014	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>	
mg/unit	221.517	<loq< th=""><th><loq< th=""><th><loq< th=""><th>5.889</th><th>209.286</th><th><loq< th=""><th><loq< th=""><th>6.342</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>5.889</th><th>209.286</th><th><loq< th=""><th><loq< th=""><th>6.342</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>5.889</th><th>209.286</th><th><loq< th=""><th><loq< th=""><th>6.342</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	5.889	209.286	<loq< th=""><th><loq< th=""><th>6.342</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>6.342</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	6.342	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>	
LOQ	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	
	%	%	%	%	%	%	%	%	%	%	%	%	
nalyzed by:			Weig			raction date:							
525, 888, 1526			3.32	34g	10/	15/24 13:44:19				1525,2032			

Analysis Method: SOP.T.30.031.NV: SOP.T.40.031.NV

Analytical Batch: LA006831POT Instrument Used: LV-SHIM-003 Analyzed Date: 10/17/24 14:49:09

Reagent: 091024.03; 091324.27; 091324.17; 092524.R17; 100724.R11

Consumables: 042c6: 251697

Pipette: LV-PIP-027; LV-PIP-023; LV-PIP-020

Cannabinoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP.T.30.031.NV for sample preparation and SOP.T.40.031.NV for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Signature 10/24/24

4439 Polaris Ave. Las Vegas, NV, 89103, US (833) 465-8378

Kaycha Labs

CBD Botanically Infused Bath Salt - Lavender 16oz Matrix : Infused Product

Type: Topical

Certificate of Analysis

PASSED

Inesscents Aromatic Botanicals

Sample : LA41014007-004 Harvest/Lot ID: 042410 Sampled : 10/14/24

Ordered: 10/14/24 Sar Ordered: 10/14/24 Tot

Sample Size Received: 453 gram
Total Amount: 1 units
Completed: 10/24/24 Expires: 10/24/25
Sample Method: SOP Client Method

Page 2 of

Terpenes

TESTED

Terpenes	LOQ (%)	mg/unit	%	Result (%)	Terpenes	LOQ (%)	mg/unit	%	Result (%)	
TOTAL TERPENES	0.0200	348.810	0.0770		ALPHA-TERPINENE	0.0200	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
LINALOOL	0.0200	256.851	0.0567		ALPHA-TERPINEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
D-LIMONENE	0.0200	91.959	0.0203		BETA-CARYOPHYLLENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
BORNEOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>BETA-MYRCENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>BETA-MYRCENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<>		BETA-MYRCENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
CAMPHENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>BETA-PINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>BETA-PINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<>		BETA-PINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
CAMPHOR	0.0200	<loq< th=""><th><loq< th=""><th></th><th>DELTA-3-CARENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>DELTA-3-CARENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<>		DELTA-3-CARENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
CARYOPHYLLENE OXIDE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>GAMMA-TERPINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th></th><th>GAMMA-TERPINENE</th><th>0.0200</th><th><loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<></th></loq<>		GAMMA-TERPINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th></loq<>		
CEDROL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed by:</th><th>Weight:</th><th></th><th>Extraction of</th><th>late:</th><th>Extracted by:</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed by:</th><th>Weight:</th><th></th><th>Extraction of</th><th>late:</th><th>Extracted by:</th></loq<>		Analyzed by:	Weight:		Extraction of	late:	Extracted by:
EUCALYPTOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>880, 889, 888, 1526</th><th>0.9545g</th><th></th><th>N/A</th><th></th><th>880</th></loq<></th></loq<>	<loq< th=""><th></th><th>880, 889, 888, 1526</th><th>0.9545g</th><th></th><th>N/A</th><th></th><th>880</th></loq<>		880, 889, 888, 1526	0.9545g		N/A		880
FARNESENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analysis Method : SOP.T.30.061.NV; SO</th><th>OP.T.40.061.NV</th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Analysis Method : SOP.T.30.061.NV; SO</th><th>OP.T.40.061.NV</th><th></th><th></th><th></th><th></th></loq<>		Analysis Method : SOP.T.30.061.NV; SO	OP.T.40.061.NV				
FENCHOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analytical Batch : LA006847TER Instrument Used : LV-GCMS-002</th><th></th><th></th><th></th><th>10/15/24 20:24:0</th><th>6</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analytical Batch : LA006847TER Instrument Used : LV-GCMS-002</th><th></th><th></th><th></th><th>10/15/24 20:24:0</th><th>6</th></loq<>		Analytical Batch : LA006847TER Instrument Used : LV-GCMS-002				10/15/24 20:24:0	6
FENCHONE	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Analyzed Date : 10/17/24 14:48:32</th><th></th><th></th><th>Batch Dai</th><th>te: 10/15/24 20:24:0</th><th>0</th></loq<></th></loq<>	<loq< th=""><th></th><th>Analyzed Date : 10/17/24 14:48:32</th><th></th><th></th><th>Batch Dai</th><th>te: 10/15/24 20:24:0</th><th>0</th></loq<>		Analyzed Date : 10/17/24 14:48:32			Batch Dai	te: 10/15/24 20:24:0	0
GERANIOL	0.0200	<loq< th=""><th><loq< th=""><th></th><th>Dilution: 10</th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th>Dilution: 10</th><th></th><th></th><th></th><th></th><th></th></loq<>		Dilution: 10					
GERANYL ACETATE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Reagent : 090324.04; 092324.02; 092</th><th>324.01</th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>Reagent : 090324.04; 092324.02; 092</th><th>324.01</th><th></th><th></th><th></th><th></th></loq<>		Reagent : 090324.04; 092324.02; 092	324.01				
GUAIOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Consumables: 1008897304; 10090973</th><th>331</th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>Consumables: 1008897304; 10090973</th><th>331</th><th></th><th></th><th></th><th></th></loq<>		Consumables: 1008897304; 10090973	331				
HEXAHYDROTHYMOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Pipette: LV-PIP-010; LV-PIP-019</th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th>Pipette: LV-PIP-010; LV-PIP-019</th><th></th><th></th><th></th><th></th><th></th></loq<>		Pipette: LV-PIP-010; LV-PIP-019					
ISOBORNEOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th>Terpene screening is performed using gas of</th><th>chromatography with mass spect</th><th>rometry follow</th><th>ving SOP.1.30</th><th>.061.NV and SOP.T.40.0</th><th>61.NV.</th></loq<></th></l0q<>	<loq< th=""><th></th><th>Terpene screening is performed using gas of</th><th>chromatography with mass spect</th><th>rometry follow</th><th>ving SOP.1.30</th><th>.061.NV and SOP.T.40.0</th><th>61.NV.</th></loq<>		Terpene screening is performed using gas of	chromatography with mass spect	rometry follow	ving SOP.1.30	.061.NV and SOP.T.40.0	61.NV.
ISOPULEGOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
NEROL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
NEROLIDOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
OCIMENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
PULEGONE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
SABINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
SABINENE HYDRATE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
TERPINOLENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
VALENCENE	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-BISABOLOL	0.0200	<l0q< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></l0q<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-CEDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-HUMULENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-PHELLANDRENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
ALPHA-PINENE	0.0200	<loq< th=""><th><loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<></th></loq<>	<loq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></loq<>							
Total (%)			0.0770							

Total (%) 0.0770

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg

Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Signature 10/24/24